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We study time-delayed stochastic systems that can be described by means of so-called delay Fokker-Planck
equations. Using Novikov’s theorem, we first show that the theory of delay Fokker-Planck equations is on an
equal footing with the theory of ordinary Fokker-Planck equations. Subsequently, we derive stationary distri-
butions in the case of small time delays. In the case of additive noise systems, these distributions can be cast
into the form of Boltzmann distributions involving effective potential functions.
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I. INTRODUCTION

Many complex systems in inanimate and animate nature
can be regarded as self-regulated systems, where the process
of self-regulation involves a finite computation time. These
systems can often be described in terms of dynamical sys-
tems involving time-delayed feedback loops. Prominent ex-
amples of such time-delayed systems are laser systems with
optical feedback �1–3� related to the Ikeda and the Lang-
Kobayashi equations �4�, vertical-cavity surface-emitting la-
sers with time-delayed feedback control �5�, and self-
regulated voltage-controlled oscillators �6,7�. Furthermore,
hydrodynamic problems �8,9�, network systems �10�, and
biological systems �11� have been discussed in the context of
time-delayed self-regulated systems. Moreover, the applica-
tion of nonlinear time series analysis �12� to time-delayed
systems and the reconstruction of the dynamics of time-
delayed systems �13� are current challenges in physics and
related disciplines.

This variety of applications calls for a theory of time-
delayed systems. While for time-delayed deterministic and
even chaotic systems many helpful theoretical results are
available in the literature and are often related to the so-
called extended phase space approach �2,3,6,9,14,15�, theo-
retical tools to deal with time-delayed stochastic systems can
hardly be found. However, in many of the aforementioned
systems fluctuating forces play important roles. This holds in
particular for biological systems. Therefore, in biophysics
researchers are often concerned not only with time-delayed
systems but with time-delayed stochastic systems �see, e.g.,
some recent studies on balancing tasks �16�, movement con-
trol �17�, the pupil light reflex �18�, and postural sway �19��.
So far, analytical studies have been focused on linear time-
delayed stochastic systems �20–26�, time-delayed bistable
systems exhibiting weak fluctuating forces �5,27�, nonlinear
time-delayed stochastic systems that can be mapped to linear
ones by means of appropriate variable transformations
�23,26�, and time-delayed stochastic systems with small time
delays �28�. In this context, the delay Fokker-Planck equa-
tion that has been introduced by Guillouzic et al. a few years
ago �22� has turned out to be a very useful tool to derive
analytical results �23,24,28,29�. However, the delay Fokker-
Planck equation approach is still in its infancy. Therefore, at

issue is to deepen our understanding of the theory of delay
Fokker-Planck equations and, in doing so, to gain further
insights into the nature of time-delayed stochastic systems.
In detail, first, we will show that delay Fokker-Planck equa-
tions can be derived in a way similar to ordinary Fokker-
Planck equations: by exploiting Novikov’s theorem. Second,
we will determine the stationary distributions of time-
delayed stochastic systems involving small time delays. Such
distributions have been discussed in a previous study �28�. In
this study distributions that differ from Boltzmann distribu-
tions have been found. In contrast, our approach will yield
Boltzmann distributions that involve delay-dependent effec-
tive potential functions.

II. DELAY FOKKER-PLANCK EQUATIONS

A. Derivation by means of Novikov’s theorem

Let X�t��R denote a random variable that describes the
state of a time-delayed stochastic system subjected to natural
boundary conditions �30�. We assume that the system dy-
namics is defined by the stochastic delay differential equa-
tion

d

dt
X�t� = h„X�t�,X�t − ��… + g„X�t�,X�t − ��…��t� �1�

for t�0, where ��0 denotes the time delay of the system
and g corresponds to a �state-dependent� noise amplitude.
We assume that the initial condition can be written in terms
of a function ��z� which gives us X�z�=��z� for z� �−� ,0�.
In Eq. �1� the function ��t� corresponds to a Langevin force
with ���t��=0 and ���t���t���=��t− t��. More precisely, let
Cy��� denote the characteristic functional of a random vari-
able y�t� and test function ��t� defined by Cy���
= �exp�i�−�

� y�t���t�dt	�y. Then, the Langevin force ��t� is
completely defined by the characteristic functional �31�

C���� = exp
−
1

2
�

−�

�

�2�t�dt� . �2�

Finally, note that we will interpret the noise term g��t� in
terms of the Stratonovich calculus. In order to derive the
delay Fokker-Planck equation of Eq. �1� we proceed as in the
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case of nondelayed systems �see, e.g., �31,32��. Let P�x , t�
= ��(x−X�t�)� denote the probability density of the stochastic
process defined by Eq. �1�. Differentiating P with respect to
time and using Eq. �1�, we get

�3�

Note that the stochastic process X�t� has the joint probability
density P�x , t ;x� , t��. Consequently, the A term of Eq. �3� can
be written as

A =� h�y,y��P�y,t;y�,t − ����x − y�dy dy�. �4�

Integrating with respect to y and changing the notation y�

into x� yields

A =� h�x,x��P�x,t;x�,t − ��dx�. �5�

If we substitute the factor 1 in terms of ��(x�−X�t−��)dx�

into the B term occurring in Eq. �3�, the B term can be
equivalently expressed as

�6�

In order to evaluate the B� term, we use Novikov’s theorem
�31,32�, which states that for a Langevin force with charac-

teristic functional �2� and an operator Ĉ��� of the Langevin
force ��t� we have

���t�Ĉ���� =
 �Ĉ���
���t�

� , �7�

where the � symbols denote the variational derivative of Ĉ
with respect to �. Next, we regard X�t� and X�t−�� as ex-

pressions depending on ��t�. We put Ĉ���=�(x−X�t�)�(x�

−X�t−��). Then, the left hand side of Eq. �7� corresponds to
the B� term of Eq. �6�. The right hand side of Eq. �7� can be
written as


 �Ĉ���
���t�

� =
 �Ĉ

�X�t�
�X�t�
���t�

� +
 �Ĉ

�X�t − ��
�X�t − ��

���t�
� .

�8�

Due to causality, we have �X�t−�� /���t�=0 for �	0. That
is, the second term on the right hand side of Eq. �8� vanishes.
Let us discuss next the first term. It is clear that we have

�Ĉ

�X�t�
= −

�

�x
�„x − X�t�…�„x� − X�t − ��… . �9�

Furthermore, using Eq. �1� in terms of

X�t� = X�0� + �
0

t

h„X�s�,X�s − ��…ds

+ �
0

t

g„X�s�,X�s − ��…��s�ds , �10�

we find that

�X�t�
���t�

=
1

2
g„X�t�,X�t − ��… . �11�

Taking Eqs. �7�–�11� together, we obtain

B� =
 �Ĉ

�X�t�
�X�t�
���t�

�
= −

1

2

�

�x
g�x,x����„x − X�t�…�„x� − X�t − ��…�

= −
1

2

�

�x
g�x,x��P�x,t;x�,t − �� . �12�

Substituting Eqs. �5�, �6�, and �12�, into Eq. �3�, we obtain
the delay Fokker-Planck equation

�

�t
P�x,t� = −

�

�x
� h�x,x��P�x,t;x�,t − ��dx�

+
1

2
� �

�x
g�x,x��

�

�x
g�x,x��P�x,t;x�,t − ��dx�.

�13�

In order to obtain a delay Fokker-Planck equation for the
stochastic delay differential equation �1� when interpreting
the noise term in Eq. �1� according to the Ito calculus, we
exploit the equivalence �29�

�14�

That is, we write the Ito form �1� into a Stratonovich form
�1� by replacing h by h−2−1g dg /dx. Replacing h by
h−2−1g dg /dx in Eq. �13� gives us

�

�t
P�x,t� = −

�

�x
� h�x,x��P�x,t;x�,t − ��dx�

+
1

2
� �2

�x2g2�x,x��P�x,t;x�,t − ��dx�, �15�

which is the delay Fokker-Planck equation related to the Ito
interpretation of Eq. �1�.

B. Small delay approximations of stationary distributions

We will consider two approaches. The first approach is
based on an approximation of probability density distribu-
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tions. The second approach has been proposed in an earlier
work �22� and is based on an approximation of the stochastic
delay differential equation �1�.

1. Probability density approach: General case

Let us turn first to the small delay approximation of sta-
tionary distributions of Eq. �1� with g�x ,x��=g�x�. For the
sake of simplicity, we interpret Eq. �1� by means of the Ito
calculus which means that our departure point will be the
delay Fokker-Planck equation �15�. Note that in order to dis-
cuss small delay approximations for Eq. �1� involving Stra-
tonovich calculus, one needs to transform in a preanalytical
step Eq. �1� into the corresponding Ito form using Eq. �14�.
First, note that for �=0 Eq. �1� with g�x ,x��=g�x� reduces to

d

dt
X�t� = h�0��X� + g�X���t� �16�

with h�0��x�=h�x ,x�. Next, let us write Eq. �1� as

�17�

For small time delays � the expression R corresponds to a
perturbation of the unperturbed system �16�. The perturba-
tion term R is of the order �. In what follows, we treat the
perturbed system �17� by means of a result that has previ-
ously been derived for stochastic systems with perturbations
given by time-delayed feedback loops �33�. Accordingly, we
start off with the delay Fokker-Planck equation �13� in the
stationary case given by

�h�0��x� +� R�x,x��Pst�x�,t − ��x,t�dx��Pst�x�

=
1

2

d

dx
g2�x�Pst�x� , �18�

where Pst�x� and Pst�x� , t−� �x , t� denote the stationary distri-
bution and the stationary conditional distribution of X�t�, re-
spectively. As shown in �33�, the zeroth order stationary dis-
tribution and the correction term of first order in � can be
combined to give a distribution Pst

�1��x� normalized to unity
that satisfies

Pst�x� = Pst
�1��x� + O��2� . �19�

In short, Pst
�1��x� is a first order approximation of the station-

ary distribution Pst�x�. It can be shown that Pst
�1��x� is defined

by Eq. �18� when we replace in Eq. �18� Pst�x� by Pst
�1��x� and

Pst�x� , t−� �x , t� by means of its zeroth order approximation
Pst

�0��x� , t−� �x , t� �33�. Thus, we obtain

�h�0��x� +� R�x,x��Pst
�0��x�,t − ��x,t�dx��Pst

�1��x�

=
1

2

d

dx
g2�x�Pst

�1��x� . �20�

At this stage, we can exploit the definition of R as indicated
in Eq. �17� in order to simplify Eq. �20�:

� h�x,x��Pst
�0��x�,t − ��x,t�dx�Pst

�1��x� =
1

2

d

dx
g2�x�Pst

�1��x� .

�21�

Comparing Eqs. �21� and �15�, we see that we used the in-
termediate steps given by Eqs. �16�–�20�, to find a good ap-
proximation of the integral kernel occurring in Eq. �15�.
Since Pst

�0��x� , t−� �x , t� is the conditional probability density
of the unperturbed problem �16�, we are dealing with Mar-
kovian stationary transition probability density that only de-
pends on a time differences �i.e., on �� and is invariant un-
der time inversion: Pst

�0��x� , t−� �x , t�= Pst
�0��x� , t+� �x , t� �34�.

Since we are interested only in small time delays, we can use
the short time propagator of Eq. �16� given by �30�

Pst
�0��x�,t + ��x,t� =� 1

2
g2�x��
exp
−

�x� − x − h�0��x���2

2g2�x�� � ,

�22�

which �as mentioned before� also corresponds to Pst
�0��x� , t

−� �x , t�. Consequently, Eq. �21� becomes

heff�x�Pst
�1��x� =

1

2

d

dx
g2�x�Pst

�1��x� �23�

with

heff�x� =� 1

2
g2�x���−�

�

h�x,x��

�exp
−
�x� − x − h�0��x���2

2g2�x�� �dx�. �24�

From Eq. �23� it follows that the stationary distribution
Pst

�1��x� reads

Pst
�1��x� =

1

Zg2�x�
exp
2�x heff�x��

g2�x��
dx�� , �25�

where Z is a normalization constant. For stochastic delay
differential equations that involve additive noise sources and
can be cast into the form

d

dt
X�t� = h„X�t�,X�t − ��… + �Q��t� �26�

where Q	0 is the noise amplitude, we obtain

Pst
�1��x� =

1

Z
exp
−

2Veff�x�
Q

� , �27�

where Z is again a normalization constant and the effective
potential Veff is given by

Veff�x� =� 1

2
Q�
�x

dx��
−�

�

dx�h�x�,x��

�exp
−
�x� − x� − h�0��x����2

2Q�
� . �28�

That is, the small delay approximations Pst
�1� correspond to

Boltzmann distributions.
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For a stochastic delay differential equation �1� that exhib-
its a time-delayed variable in the amplitude function g�x ,x��,
we can proceed as in the previous case g�x ,x��=g�x�. A de-
tailed calculation �see Appendix A� yields the probability
density

Pst
�1��x� =

1

ZDeff�x�
exp
�x heff�x��

Deff�x��
dx�� , �29�

where Z is another normalization constant and the effective
drift and diffusion coefficients heff�x� and Deff�x� are de-
scribed by

heff�x� =� 1

4
D�0��x���−�

�

h�x,x��

�exp
−
�x� − x − h�0��x���2

4D�0��x�� �dx�,

Deff�x� =� 1

4
D�0��x���−�

�

g�x,x��

�exp
−
�x� − x − h�0��x���2

4D�0��x�� �dx� �30�

with D�0��x�=g2�x ,x� /2. Next, let us consider an important
special case, namely, stochastic systems that involve linear
time-delayed feedback loops.

2. Probability density approach: Linear time-delayed feedback
loops

We assume now that we are dealing with systems that can
be described in terms of stochastic delay differential equa-
tions of the form

d

dt
X�t� = h̃„�X�t�… + �X�t − �� + g�x���t� . �31�

Here, we have h�x ,x��= h̃�x�+�x� and h�0��x�= h̃�x�+�x. The
effective drift �24� reads

heff�x� =� 1

2
g2�x���−�

�

dx�h�x�,x��

�exp
−
�x� − x� − h�0��x����2

2g2�x�� �
= h̃�x�� + �� 1

2
g2�x���−�

�

dx�x�

�exp
−
�x� − x� − h�0��x����2

2g2�x�� �
= h̃�x�� + ��x� + h�0��x���� = h̃�x�� + �x� + ��h�0��x��

= �1 + ���h�0��x�� . �32�

From Eq. �25� we read off that the stationary distributions
Pst

�1� are given by

Pst
�1��x� =

1

Zg2�x�
exp
2�1 + ����x h�0��x��

g2�x��
dx�� . �33�

In particular, for systems with additive noise sources �i.e., for
g�x�=�Q�, we obtain Boltzmann distributions �27� with ef-
fective potentials

Veff�x� = − �1 + ����x

h�0��x��dx�. �34�

As a first example, one may consider the linear stochastic
delay differential equation dX�t� /dt=−aX�t�−bX�t−��
+�Q��t� for which an exact analytical solution of Pst�x� ex-
ists. In Appendix B it is shown in detail how the perturbation
theoretical approach can be applied to this kind of system
and the analytical solution of Pst�x� is reproduced in the limit
of small time delays.

Next, let us study systems that evolve in double-well po-
tentials and are subjected to time-delayed linear feedback
loops. Note that such systems have recently attracted consid-
erable attention �5,27�. To begin with, we assume that the
system dynamics is given by

d

dt
X�t� = aX�t� − bX3�t� + cX�t − �� + �Q��t� �35�

with a	0,b	0. The parameter c can assume arbitrary val-
ues. From Eq. �35� we read off that h�x ,x��=ax−bx3+cx�

and h�0��x�= �a+c�x−bx3. Substituting these functions into
Eq. �28� we obtain Veff. Thus, the first order approximation
Pst

�1��x� for the bistable system �35� is given by �27� with

Veff�x� = �1 + c��
bx4

4
− �a + c�

x2

2
� . �36�

Figure 1 shows Pst
�1��x� as computed from Eqs. �27� and �36�

and as obtained by solving the model �35� numerically.

FIG. 1. Solid lines represent stationary probability densities
Pst

�1��x� of the double-well potential model �35� computed from Eqs.
�27� and �36� for �=0, 0.05, and 0.1 �from top to bottom�. Other
parameters: a=3.0,b=3.0,c=−2.5,Q=1.0. Diamonds represent ex-
act stationary distributions Pst�x� of Eq. �35� obtained by solving
Eq. �35� numerically using an Euler forward scheme �30� in com-
bination with a Box-Muller algorithm for the realizations of the
Langevin force �ensemble size N=1.3�108, single time step 
t
=0.01�.
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3. Stochastic delay differential equation approach

As suggested in �22�, for stochastic delay differential
equations of the form �1� with g�x ,x��=g�x�, one may derive
approximative stochastic differential equations that describe
Markov diffusion processes. In order to derive these approxi-
mative evolution equations, one needs to state two hypoth-
eses. The first is that the Taylor approximation X�t−��
=x�t�−� dX�t� /dt+O��2� holds for the stochastic systems un-
der consideration. The second hypothesis is that for the non-
linear drift function h�x ,x�� a similar Taylor expansion holds:

h„X�t�,X�t − ��… = h�0��x� − �� �

�x�

h„X�t�,x�…�
x�=X�t�

d

dt
X�t�

+ O��2� . �37�

The stationary distributions obtained assume the form

Pst
�1��x� =

1

Zg2�x��1 − � � h�x,x�/�x��2

�exp
2�x h�0��x��
g2�x���1 − � � h�x�,x��/�x��

dx�� .

�38�

For systems involving linear time-delayed feedback loops,
that is, for systems that are described by Eq. �31�, we have
�1+��h�x� ,x�� /�x��=1+��. Using 1/ �1+���=1−��
+O��2�, we see that Eq. �38� reduces to Eq. �33�. That is, the
probability density approach and the stochastic delay differ-
ential equation approach yield consistent results. However,
for systems with drift functions h�x ,x�� that involve nonlin-
ear terms like xnx�

m with n�1,m�1 we obtain different
kinds of first order approximations. In particular, for an ad-
ditive noise system �i.e., we have g=�Q� the probability den-
sity approach yields a Boltzmann distribution given by Eqs.
�27� and �28�. In contrast, for g=�Q Eq. �38� reads

Pst
�1��x� =

1

Z�1 − � � h�x,x�/�x��2

�exp
 2

Q
�x h�0��x��

�1 − � � h�x�,x��/�x��
dx�� . �39�

That is, a time-delayed system that exhibits additive noise is
approximated by means of a system that does not involve a
time delay but exhibits multiplicative noise. We may specu-
late where this discrepancy comes from. It is clear that the
hypothesis �37� holds in the limit of vanishing noise, where
X�t� can be regarded as a continuously differentiable func-
tion. However, when the noise amplitude cannot be regarded
as a small parameter then X�t� is certainly not a continuously
differentiable function and for nonlinear functions h we may
have to add on the right hand side of Eq. �37� terms that are
of the order � and depend on the noise amplitude g2. Let us
illustrate this point for a drift term h�x ,x��=axnx�

m with
n�1,m�1. In this case, taking the average of Eq. �37� for
the stationary case yields the relationship

�Xn�t�Xm�t − ���st = �xn+m�st + O��2� . �40�

The expectation value �h(X�t� ,X�t−��)�st is a continuously
differentiable function with respect to �. Therefore, in this
case the Taylor expansion can be applied and yields

+ O��2� . �41�

We see that the hypothesis �37� does not account for the
linear term in � proportional to F. Let us mention once again
that this term will become small in the limit of vanishing
noise amplitude �i.e., for g2→0 we have �F�O�2��. For
finite noise amplitudes, however, the expression �F can
make a significant contribution to the first order approxima-
tion. Let us illustrate this point by means of two examples.

First, let us consider the case n=m=1 addressed in �22�.
As shown in �29�b��, we then obtain F=−�g2�X��st /2. That is,
we have

�X�t�X�t − ���st = �X2�st −
1

2
��g2�X��st + O��2� . �42�

In this case, the hypothesis �37� is inconsistent with �42�. In
fact, as shown in �22� the small delay approximation based
on the stochastic delay differential equation becomes worse
when the noise amplitude g2 is increased. In sum, for sto-
chastic delay differential equations involving a drift term
h�X�t�X�t−��, a more appropriate hypothesis would read

h„X�t�,X�t − ��… = h�0��x� − �� �

�x�

h„X�t�,x�…�
x�=X�t�

d

dt
X�t�

+ O��g2� + O��2� . �43�

Equation �43� is consistent with Eq. �42�.
Second, let us consider the stochastic delay differential

equation

d

dt
X�t� = − �X2�t�X�t − �� + �Q��t� . �44�

The probability density approach yields the Boltzmann dis-
tribution �27� with

Veff�x� =
�x4

4

1

1 + 2��x2/3
; �45�

see Eq. �28�. For �=0 the potential increases as x4, whereas
for �→� the potential behaves as x2. As a result, when we
increase �, the potential becomes less attractive, the station-
ary distribution becomes wider, and the variance and all even
moments of Pst

�1� increase as a function of �. In contrast, the
stochastic delay differential equation approach yields the sta-
tionary distribution
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Pst
�1��x� =

1

Z�1 + ��x2�2exp
−
2Veff�x�

Q
� �46�

with Veff�x� given by Eq. �45� again �see Eq. �39��. The ques-
tion arises, how does the distribution �46� behave as a func-
tion of �? To answer this question we consider the approxi-
mative Ito stochastic differential equation of Eq. �44�, which
reads

d

dt
X�t� = − ��1 + ��X2�X3 + �Q�1 + ��X2���t�; �47�

see �22�. From the corresponding Fokker-Planck equation we
see that in the stationary case the moments �X2n�st satisfy

�X4�st + ���X6�st =
Q

2
�1 + 2���X2�st + �2�2�X4�st� . �48�

The moments are functions of the parameter �. Differentiat-
ing Eq. �48� with respect to � at �=0, we get

� d

d�
�X4�st�

�=0
= ���Q�X2�st − �X6�st���=0. �49�

For �=Q=1 we find Q�X2�st− �X6�st�0 for �=0. That is, the
moment �X4�st decreases when the delay is increased. In fact,
the distribution predicted by the stochastic delay differential
equation approach becomes smaller when � is increased—as
shown in Fig. 2. In sum, the probability density approach
proposes that the distribution Pst

�1� becomes wider for increas-
ing delay, whereas the stochastic delay differential equation
approach proposes that the stationary distribution Pst

�1� be-
comes smaller. As shown in Fig. 2 the numerical solution of
Eq. �47� clearly indicates that the distribution becomes wider
with increasing delay. Moreover, there is a good match

between the numerically and analytically obtained results
when the probability density approach is applied.

III. CONCLUSIONS

The objective of the present study was to improve our
understanding of time-delayed stochastic systems, in general,
and delay Fokker-Planck equations, in particular. In this re-
gard, we have shown that delay Fokker-Planck equations can
be derived by means of Novikov’s theorem—just like ordi-
nary Fokker-Planck equations. This result puts the theory of
delay Fokker-Planck equations on an equal footing with the
theory of ordinary Fokker-Planck equations. On the basis of
delay Fokker-Planck equations, we have derived stationary
distribution functions that describe the stationary states of
time-delayed stochastic systems involving small time delays.
For systems involving additive noise sources these stationary
distributions correspond to Boltzmann distributions.

In a previous work, time-delayed stochastic systems have
been studied in the small delay limit as well using Markov
approximations of stochastic delay differential equations
�22�. For systems involving linear time-delayed feedback
loops the distributions derived by means of this alternative
approach correspond to the distributions derived in our ap-
proach. However, if we deal with evolution equations with
nonlinear terms of time-delayed variables, both approaches
yield different results. We have argued that the reason for
this discrepancy might be the fact that the Taylor expansion
of nonlinear functions that is used in the alternative approach
neglects particular first order terms. These first order terms
scale with the noise amplitude and vanish in the limit of
vanishing noise amplitudes. In two examples, we have ex-
plicitly demonstrated this issue. In addition, we would like to
note that the approach via approximative stochastic differen-
tial equations cannot deal with noise sources that depend on
time-delayed variables. The reason for this is that the ap-
proximative stochastic differential equations would exhibit
products of Langevin forces �i.e., terms like ��t���t��, which
are difficult to handle. In sum, we may compare the ap-
proaches by means of probability density functions and ap-
proximation of stochastic delay differential equations �see
Table I�. First of all, both approaches can successfully be
applied for systems with linear time-delayed feedback loops
and for systems in the weak noise limit. For nonlinear sys-
tems with noise sources that cannot be regarded as small

FIG. 2. Solid lines represent stationary probability densities
Pst

�1��x� of the model �44� computed from Eqs. �27� and �45� for �
=0, 0.05, and 0.1 �from top to bottom�. Dashed lines represent
stationary probability densities Pst

�1��x� of the model �44� computed
from Eq. �46� for �=0.05 and 0.1 �from bottom to top�. Other pa-
rameters: �=Q=1.0. Diamonds represent exact stationary distribu-
tions Pst�x� obtained by solving Eq. �44� numerically �see also cap-
tion for Fig. 1�.

TABLE I. Stochastic delay differential equation �SDDE� ap-
proach versus probability density function �PDF� approach.

h g2 SDDE PDF

Linear in x� g2�x� � �

Nonlinear in x� g2�x�→0 � �

Nonlinear in x� g2�x��O�0� ? �

Nonlinear in x� g2�x ,x�� �
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quantities, it is not clear whether or not approximative delay
differential equations yield correct results. In the case of sys-
tems with noise amplitudes that depend on time-delayed
variables, approximative delay differential equations cannot
be applied.

APPENDIX A: GENERAL CASE g=g„x ,x�…

For D�x ,x��=g2�x ,x�� /2 Eq. �15� becomes

�

�t
P�x,t� = −

�

�x
� h�x,x��P�x,t;x�,t − ��dx�

+� �2

�x2D�x,x��P�x,t;x�,t − ��dx�. �A1�

The decompositions h�x ,x��=h�0��x�+R�x ,x�� and D�x ,x��
=D�0��x�+R��x ,x�� with D�0��x�=D�x ,x� can be used to iden-
tify for small delays � terms of zeroth and first order:
h�0� ,D�0��O�0� ,R ,R��O���. Accordingly, the Fokker-
Planck equation of the unperturbed system is given by

�

�t
P�x,t� = −

�

�x
h�0��x�P +

�2

�x2D�0��x�P�x,t� . �A2�

The short time propagator reads

Pst
�0��x�,t + ��x,t� =� 1

4
D�0��x��
exp
−

�x� − x − h�0��x���2

4D�0��x�� � .

�A3�

Substituting Pst�x , t ;x� , t−��= Pst
�0��x� , t−� �x , t�Pst

�1��x� into
the stationary version of Eq. �A1�, we obtain

heff�x�Pst
�1��x� =

�

�x
Deff�x�Pst

�1��x� , �A4�

where the effective drift and diffusion coefficients are de-
scribed by Eq. �30�. Solving Eq. �A4� for Pst

�1��x� gives us Eq.
�29�.

APPENDIX B: LINEAR CASE

In the linear case we have

d

dt
X�t� = − aX�t� − bX�t − �� + �Q��t� �B1�

with h�x ,x��=−ax−bx� and h�0��x�=−�a+b�x. Equation �28�
becomes

Veff = − �1 − b���a + b�
x2

2
. �B2�

The stationary distribution �27� explicitly reads

Pst
�1��x� =

1

Z
exp
−

�1 − b���a + b�
Q

x2� �B3�

and can alternatively be expressed by

Pst
�1��x� =

1
�2
�2�1�

exp
−
x2

2�2�1�� , �B4�

where �2�1� denotes the variance of the first order approxi-
mation and is given by

�2�1� =
Q

2�1 − b���a + b�
=

�1 + b��Q
2�a + b�

+ O��2� . �B5�

Let us compare the first order approximation with the exact
stationary distribution of Eq. �B1�, which reads �20,24�

Pst�x� =
1

�2
�2
exp
−

x2

2�2� . �B6�

In order to write down the variance �2 of Eq. �B6�, one needs
to distinguish between the cases b	a , a=b, and b	a. The
explicit expressions for �2 can be found in �20,24�. In the
limit of small time delays, however, all three expressions
reduce to

�2 =
�1 + b��Q
2�a + b�

+ O��2� . �B7�

Comparing Eqs. �B4�–�B7�, we see that �2�1� and Pst
�1�, re-

spectively, correspond indeed to the correct first order ap-
proximations of the variance and the stationary distribution
of the linear model �B1�.
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